
1

ABSTRACT

 This paper describes design and programming techniques em-
ployed in the development of a language environment for the
EXPRESS information modeling language. A fundamental con-
cern in the development of language environments for object
flavored languages is the degree to which the object model of the
implementation language matches that of the language being mod-
eled. If there is significant mismatch, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model,i.e. eschewing the implementation's na-
tive object model and programming with elementary tools the
object oriented behaviors of the target language environment. This
paper describes how object model mismatch was eliminated and a
responsive, incremental EXPRESS language environment is being
developed using the Common Lisp Object System (CLOS)
metaobject protocol (MOP) and dynamic object techniques.

1.0 INTRODUCTION

The paper begins with a presentation of background information
regarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 provides an overview of design princi-
ples commonly employed in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0
presents aspects of the author’s Common Lisp implementation of
an EXPRESS language environment. It describes solutions to the
problems introduced in section 2 employing dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS language environment cur-
rently under development. The paper concludes with a summary
of how dynamic object techniques and meta-level programming

have contributed to the development of an EXPRESS language en-
vironment and how these same techniques might find use in the
larger context of STEP development.

2.0 BACKGROUND

EXPRESS [ISO-11], [Schenck] is a formal language used to de-
scribe information models of STEP. The STEP standards support
the unambiguous communication of industrial information ex-
changed in forms derived from EXPRESS language information
models.1 Within the STEP architecture, aproduct model, that is,
an information model from which a range of similar artifacts can
be described, is defined by anapplication protocol (for example,
the application protocol,Ship Structures, [ISO-218]). Application
protocols rely on libraries of commonly used concepts calledinte-
grated resources. The integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for example,Geometric and Topological Representations
[ISO-42], which can be used in the description of application pro-
tocol for ship structures, automotive components,etc.. The reuse
of common components improves the quality and development ef-
ficiency of application protocols and facilitates information
sharing among related disciplines (e.g., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

Integrated resources and application protocols are defined in the
EXPRESS language. Further discussion of the STEP architecture
[ISO-1] is outside the scope of this paper.

1EXPRESS itself is an ISO standard developed by the STEP community.

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

pdenno@cme.nist.gov

(301) 975-3595

Dynamic Objects W orkshop

Object W orld, 1996

2

In order to convey the information intended, systems that ex-
change data must agree upon the semantics of that data. A
fundamental design goal of an information modeling language,
such as EXPRESS, is to provide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con-
straints which data sets exchanged must satisfy. In EXPRESS
these constraints take several forms:

• Constraints on an attribute’s type2 3: the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

• Constraints on semantic consistency of entity
instances:Rules calledwhere rules can be associated
with an entity type. For example, an entity type named
unit-vector possessingREAL valued attributesx
andy might have a where rule requiringx**2 + y**2
= 1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

• Constraints on an entity instance’s type:EXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledcomplex entity
types) and constraints on the legal composition of types
within the hierarchy. For example, an abstract typeper-
son might have subtypesmale andfemale . An
instance ofperson must be one ofmale or female
but not both.

• Constraints on populations of entity instances: Popu-
lations of entities (data sets) must satisfy constraints
described inglobal rules. Such rules can, for example,
constrain the cardinality of the instances of a type (e.g.,
there is only one CEO) or require specific relationships
between entities (e.g., every employee has a supervisor).

• Constraints on the existence of an entity instance:The
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language environment for EXPRESS, that is, an environment
that allows the development of EXPRESS information models and
sample data sets, can be of great value to developers of EXPRESS
information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since the development of
STEP standards has proved to be a lengthy process and a large part
of that effort involves the articulation of an EXPRESS information

2Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated withentities, analogous to C++ or CLOS classes.

3EXPRESS defines the usual primitive types and enumeration and allows
user-defined types that generalize or specialize on primitive or other user-
defined types

model, the STEP community is quite interested in tools that im-
prove the efficiency of EXPRESS development.

Several tools supporting EXPRESS development exist, [Wil-
son], [Libes], [Morris], [STI], [Kiekenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing
models, and the generation of application interfaces than it is the
incremental development of new EXPRESS models. The work de-
scribed here has as its goal the development of a responsive,
incremental development environment for the concurrent develop-
ment of EXPRESS models and representative data sets, (such an
environment as is available to Lisp programmers).

The design of language environments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilation. To date, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Kiekenbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation language (e.g., C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESS environments have
advantages over interpreted approaches in that libraries of com-
piled EXPRESS can be saved for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful in various
applications that want access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengthy, however, can not support a
responsive, incremental development environment: complete pro-
cessing of large EXPRESS models using this approach can take 30
minutes or more.

A strictly interpreted approach can be more responsive to the in-
cremental development of the EXPRESS subject code but can not
take advantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the language (e.g., class-
es, iteration, arithmetic operations) in direct ways. For example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type. For these reasons, the development of an
interpreter requires the development of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
development of an interpreter for a language as large as EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, however, might make interpreted approaches more feasible,
(e.g., [Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'object flavored' but not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS makes a distinction between classes and instances, allows
class hierarchies and inheritance of data attributes.

An object model is a model with a class/instance distinction, en-
capsulation of state via methods and inheritance of behavior from

3

parent classes.Concrete object models,those underlying program-
ming languages, vary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities and various other fea-
tures [Manola]. A fundamental concern in the development of a
language environment for an object flavored language is the de-
gree to which the object model of the implementation language
matches that of the language being modeled. If there is significant
mismatch between the object model of the implementation lan-
guage and that of the target language, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model. That is, software is not reused, but rather,
beginning again with elementary tools, the programmer imple-
ments the object oriented behaviors of the target language
environment. This, of course, is a great amount of work for what
might be a small (but crucial!) deviation towards the behaviors of
the target object model. This paper hopes to illustrate the value of
a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the differences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object model5 differs in some important ways
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of
mismatch between these languages and EXPRESS are found in
the inheritance of attributes (C++ data members, or CLOS slots)
and the approach to subclassing. Three characteristics of the EX-
PRESS language that present challenges in the development of an
EXPRESS language environment are described below:

• CHALLENGE(same-named-attr):When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attributes are inherited by the subclass,
one from each parent defining the attribute.

• CHALLENGE(redefined-attr): In EXPRESS an attribute
defined in a supertype may be redefined in the subtype
only if the domain of values of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but aninteger in the super-
type can not be redefined as anumber in the subtype.

• CHALLENGE(ANDOR-subtyping): Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

4These are, of course, challenges for compiled approaches. Interpreted ap-
proaches using static implementation languages can not make use of the
objects in these ways.

5Although not strictly object oriented, EXPRESS possesses enough of the
characteristics of an object oriented language to make use of the termob-
ject modelmeaningful in this context.

An example of this behavior (calledANDOR subtyping here) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR c ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,
a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
a+b+c, for example, denotes an anonymous class (complex entity
type) possessing the attributes (data members, slots) of the classes
a, b and c.

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-attr) is met quite easily when EX-
PRESS entities are represented as C++ classes, provided that the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a relatively simple
solution to this problem can be found.

Solutions toCHALLENGE(redefined-attr) require knowledge of
the attribute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attribute of the parent. The implementation lan-
guage’s ability to provide access to descriptive information about
the class (e.g, names of attributes, attribute objects, superclasses,
precedence ordering,etc.) can facilitate this effort. For example, in
CLOS, user-defined classes are instances ofstandard-class
or some programmer-defined subtype of it.standard-class
is a subclass ofstandard-object , on which default behaviors
for objects are defined. Since classes (e.g., the classes representing
EXPRESS entity types) are instances themselves, the same ma-
chinery used by other instances (e.g., access to attribute values,
object construction,etc.) can be reused by instances that are class-
es. An EXPRESS language environment can use this machinery
directly, with one exception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects themselves, C++
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the type’s name are
defined [X3J16]. However, no mechanism exists in C++ to identi-
fy the data members (i.e., EXPRESS entity attributes) of a class.
Therefore, some means other than querying the class must be
found to obtain attributes. One method is to define ‘dictionary’ ob-
jects for both entities and attributes. These objects supplement the
information found in the class with references to attribute objects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to classes.6

CHALLENGE(ANDOR-subtyping) is the problem of managing
the proliferation of classes possible in ANDOR subtyping. That is,
because of ANDOR subtyping, a large EXPRESS information
model can result in the definition of hundreds of complex entity
types. ANDOR subtyping, although an advantage from the model-
er’s standpoint, is a challenge to the language environment
programmer. For the C++ programmer, the question is whether to
implement each complex entity as a class, thereby increasing the

4

size of the image and compile time, or opting for some solution
where complex entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity and elegance
in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classes was implemented in this work.
It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed from existing classes. [Kiczales]. This is de-
scribed further in the next section.

3.0 ELEMENTS OF THE SOLUTION

The author is developing an EXPRESS language environment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an interface to a language that gives the
programmer the ability to incrementally modify the language’s be-
havior and implementation [Kiczales]. The metaobject protocol is
used to eliminate the mismatch between the implementation lan-
guage (CLOS) object model and the target language (EXPRESS)
object model so that the mechanisms of the implementation lan-
guage’s object system (e.g., object definition, instance creation,
method dispatching,etc.) can be reused. The motivation behind
this approach is the belief that the reuse of these mechanisms will
enhance the quality and speed of implementation.

The solution also employs dynamic object techniques (e.g., run-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that the environment be
responsive and that information models under development may
be incrementally refined. Dynamic object techniques also provide
a solution to the proliferation of classes that can occur because of
EXPRESS ANDOR subtyping.

A principle benefit of implementing in Common Lisp is that the
design may possess the advantages of both compiled and interpret-
ed approaches with few of the disadvantages of either. For
example, advantages of a compiled approach can be had: the sys-
tem can translate EXPRESS information models into Common
Lisp source code that can be compiled off-line and loaded at any
time during a session with the system. Large libraries of existing
EXPRESS information models can be accessed by the EXPRESS
developer by these means. On the other hand, the benefits of an in-
terpreter remain: EXPRESS written in the current session can
immediately and incrementally be made available by run-time
translation to Common Lisp and evaluation by the lisp interpreter.
Because Common Lisp provides a resident programming environ-
ment and interpreter, the development of a complex interpreter
‘execution engine’ is obviated.

6The careful reader might recognize that, for even more fundamental rea-
sons (because C++ does not allow run-time creation of classes) dictionary
objects are necessary in every incremental development environment im-
plemented in C++ (to describe entity types). The point here is to illustrate
one advantage of having information about the class available in the class:
the programmer has one less requirement on his implementation of dictio-
nary objects.

In the system being developed,CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that might never be populated, are created,
is solved through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a from existing classes. The existing
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS environment, generation of programmatic
classes for the entity types requires knowledge of theevaluated
set, the set of all legal entity types [ISO-11]. The evaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clause) of all entity declarations
in the subject EXPRESS7. This computation generates a structure,
complex-entity-type , for each element of the evaluated
set. This structure identifies the simple entity types (those which
are explicitly defined in the EXPRESS source) composing the
complex entity type. When an EXPRESS entity instance is en-
countered through reading data in the exchange format of
EXPRESS information models, [ISO-21], its type is checked
against the evaluated set and, if legal and already generated, is in-
stantiated. If the type is legal but the class has not yet been
generated, the class is generated using the programmatic class
mechanism. Through this means classes representing complex en-
tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attributes of each of the superclasses (simple enti-
ty types) from which it inherits.

CHALLENGE(same-named-attr) is a challenge for Common
Lisp because CLOS classes inheriting a same-named slot from
two superclasses produce a single slot. CLOS classes inherit this
behavior from the standard class metaobject (sometimes called a
metaclass) STANDARD-CLASS. The solution to this problem
uses the metaobject protocol to provide a subclass ofSTAN-
DARD-CLASS (calledEXPRESS-CLASS here) that overrides the
slot computation methods onSTANDARD-CLASS with methods
that produce multiple slots in accordance with EXPRESS object
model behavior. Although the class of the classes representing
EXPRESS entity types is no longerSTANDARD-CLASS, other
classes in the system are undisturbed by this modification.

The metaobject protocol is also used to ensure that all of the in-
formation found in an EXPRESS entity type definition can be
encoded in the corresponding CLOS class object. For example, the
standard CLOS metaobject defining slot features,STANDARD-
SLOT, was subclassed by a classEXPRESS-SLOT to allow the
recording of EXPRESS-specific features of attributes. For exam-
ple, EXPRESS entity attributes may be declared asOPTIONAL,
so that instances are free to leave that attribute’s value unspecified.
To implement this featureEXPRESS-SLOT extends the class
STANDARD-SLOT with an additional slot,OPTIONAL-P, indi-

7The supertype-constraint clause includes theANDOR constraint described
earlier as well asAND, ONEOF andABSTRACT constraints.

5

cating whether the EXPRESS attribute is optional. In a similar
fashion the EXPRESS attribute featuresDERIVED, INVERSE
andUNIQUE, and the recording of the attribute’s source (the sim-
ple entity type from which it is inherited) and EXPRESS type is
accommodated in the extended slot definition metaobject.

A solution toCHALLENGE(redefined-attr), where it is neces-
sary to determine whether the domain of an attribute in a subtype
is indeed a restriction of the domain of the same-named attribute
in the supertype, has yet to be implemented. The solution requires
analysis of the types of both attributes and will probably be ac-
complished by unification8 on the typed feature structures stored
as type information of the attributes involved.

4.0 SYSTEM ARCHITECTURE

 EXPRESS is a moderately large language.9 Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com-
prised of three components:

• a core component that provides the behaviors of the
EXPRESS object model, as described earlier, and entity
instance reading and writing routines using STEP file-
based exchange form, [ISO-21];

• an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

• a rule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

The last two of these components are discussed in this section.

An EXPRESS parser is produced from the Zebu reversible LA-
LR(1) parser generator [Laubsch]. Zebu generates parsers that are
reversible in the sense that it produces code for both a “forward”
parse to Common Lisp structures and a “reverse” parse back to the
source language (e.g., EXPRESS). The reverse parse is imple-
mented as print functions on the Common Lisp structures
generated in the forward parse. Hence when a Common Lisp
structure resulting from the forward parse of EXPRESS is printed
by Lisp, it appears as the original EXPRESS.10

Translation with the Zebu reversible parser can be performed by
providing reversible parsers for both the input language (e.g., EX-
PRESS) and the output language (e.g., certain lisp forms). To

8[Carpenter] provides an introduction to the logic of typed feature struc-
tures.

9The EXPRESS grammar consists of more than 450 productions.

perform the translation, the source language is forward parsed into
structures, then rewrite rules are executed to transform the abstract
syntax tree structures to a tree corresponding to the target lan-
guage. Finally, the reverse parser (print functions) of the target
language is used to produce the corresponding statements in the
target language. Using this approach, translation is largely a mat-
ter of specifying the BNF for both languages and sets of rewrite
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

The transformation of the abstract syntax tree is performed by a
sister application of Zebu called Zebra, [Konrad]. Zebra provides
a rule-based language for the pre-order and post-order transforma-
tion of abstract syntax trees produced by Zebu.

Zebu and Zebra have been very effective tools in overcoming
the complexity of EXPRESS translation.

5.0 CONCLUSION

The immediate goal of this work has been the design of a tool
for the efficient development of EXPRESS models. Such a tool
will serve the needs of EXPRESS developers. The software should
also find reuse in the development of EXPRESS translators (e.g.,
to CORBA IDL [CORBA], Unified method [Booch],etc.). Be-
yond EXPRESS lay the larger aspects of the STEP architecture,
(e.g., application protocols, integrated resources). The application
of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, may provide an
even greater benefit.

Finally, this work has shown that a good design of a language
environment for a object flavored language may use the imple-
mentation language’s metaobject protocol (where one exists) to
align the implementation’s object model behaviors with the needs
of the target language objects. This approach may result in a
smaller, more comprehensible program. Because the machinery of
native object system is reused, the programmer may continue to
use the familiar, native means of attribute access, object creation
and method definition.

Dynamic object techniques are likewise critical to the solution.
Dynamic object creation allows a straightforward solution to the
proliferation of implicitly defined, potentially unpopulated classes
that might otherwise result from EXPRESS ANDOR subtyping.
Because classes may be created at run-time, the system can be far
more responsive to the incremental development of the EXPRESS
information model.

In addition to the techniques of dynamic object and meta-level
programming, an efficient means to translate from the subject lan-

10Recall that lisp programmers have the freedom to define how some lisp
objects are printed by the lisp printer. Structures are printed according to a
function defined in thedefstruct . CLOS objects are printed according
to the methodprint-object .

6

guage is necessary. Although, to date, only a small amount of
necessary syntax transformation has been performed in this
project, the combination of reversible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author would like to acknowledge the important contribu-
tion to the software development of this project made by Joachim
Laubsch of Hewlett-Packard Laboratories, who developed Zebu
and provided bug fixes and suggestions. Likewise, Karsten Kon-
rad’s program, Zebra, and his suggestions on its usage helped to
make this work much easier. The author would also like to thank
the workshop reviewers, David Terebessy and Lawrence Mayka
and NIST reviewers, Bill Danner, KC Morris and Mary Mitchell
for insightful comments. Bill Danner’s ideas for future develop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugh,Unified Method
for Object-Oriented Development, Rational Software Corporation,
1995.

[Carpenter] Bob Carpenter, The Logic of Typed Feature Struc-
tures, Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBA] The Object Management Group, Inc.,The Common
Object Request Broker: Architecture and Specification (CORBA),
The Object Management Group Inc., http://ruby.omg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Overview and Fundamen-
tal Principles, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step11, 1994.

[ISO-11] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Description Methods: The
EXPRESS Language Reference Manual, International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Implementation Methods:
Clear Text Encoding of the Exchange Structure, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Integrated Generic Re-

11ISO IS level references are copyrighted and may be purchased from ISO.
Draft copies can be obtained for free at this FTP address.

sources: Geometric and Topological Representation, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-218] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Application Protocol: Ship
Structures, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, Paul Hudak and Mark Jones,Monad
Transformers and Modular Interpreters, Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clark,The NIST EXPRESS Toolkit
- Lessons Learned, EXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Protocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juergen Kiekenbeck, Annette Siegenthaler, and
Gunter Schlageter,EXPRESS to C++: A mapping of the type-sys-
tem, EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Konrad,Abstrakte Syntaxtransformation mit
getypen Merkmalstermen, Diplom Thesis, ftp://cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim Laubsch,Zebu: A Tool for Specifying Re-
versible LALR(1) Parsers. Hewlett-Packard Laboratories,
Software Technology Laboratory, Internal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/AI/html/repository.html.

[Manola] Frank Manola, Editor, X3H7 Technical Committee
(Object Information Management),Features Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, David Sauder and Sandy Ressler,
Validation Testing System: Reusable Software Component Design.
National Institute of Standards and Technology, NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peter Wilson, Information
Modeling: The EXPRESS Way, Oxford University Press, 1994.

[STI] STEP Tools Inc.,Home Page, http://www.steptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS Tools and Services, (1990-
1995), ftp://pub/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3J16,Work-
ing Paper for Draft Proposed International Standard for
Information Systems Programming Language C++, http://
www.cygnus.com/misc/wp/draft/, April 28, 1995.

1

ABSTRACT

 This paper describes design and programming techniques em-
ployed in the development of a language environment for the
EXPRESS information modeling language. A fundamental con-
cern in the development of language environments for object
flavored languages is the degree to which the object model of the
implementation language matches that of the language being mod-
eled. If there is significant mismatch, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model,i.e. eschewing the implementation's na-
tive object model and programming with elementary tools the
object oriented behaviors of the target language environment. This
paper describes how object model mismatch was eliminated and a
responsive, incremental EXPRESS language environment is being
developed using the Common Lisp Object System (CLOS)
metaobject protocol (MOP) and dynamic object techniques.

1.0 INTRODUCTION

The paper begins with a presentation of background information
regarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 provides an overview of design princi-
ples commonly employed in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0
presents aspects of the author’s Common Lisp implementation of
an EXPRESS language environment. It describes solutions to the
problems introduced in section 2 employing dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS language environment cur-
rently under development. The paper concludes with a summary
of how dynamic object techniques and meta-level programming

have contributed to the development of an EXPRESS language en-
vironment and how these same techniques might find use in the
larger context of STEP development.

2.0 BACKGROUND

EXPRESS [ISO-11], [Schenck] is a formal language used to de-
scribe information models of STEP. The STEP standards support
the unambiguous communication of industrial information ex-
changed in forms derived from EXPRESS language information
models.1 Within the STEP architecture, aproduct model, that is,
an information model from which a range of similar artifacts can
be described, is defined by anapplication protocol (for example,
the application protocol,Ship Structures, [ISO-218]). Application
protocols rely on libraries of commonly used concepts calledinte-
grated resources. The integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for example,Geometric and Topological Representations
[ISO-42], which can be used in the description of application pro-
tocol for ship structures, automotive components,etc.. The reuse
of common components improves the quality and development ef-
ficiency of application protocols and facilitates information
sharing among related disciplines (e.g., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

Integrated resources and application protocols are defined in the
EXPRESS language. Further discussion of the STEP architecture
[ISO-1] is outside the scope of this paper.

1EXPRESS itself is an ISO standard developed by the STEP community.

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

pdenno@cme.nist.gov

(301) 975-3595

Dynamic Objects W orkshop

Object W orld, 1996

2

In order to convey the information intended, systems that ex-
change data must agree upon the semantics of that data. A
fundamental design goal of an information modeling language,
such as EXPRESS, is to provide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con-
straints which data sets exchanged must satisfy. In EXPRESS
these constraints take several forms:

• Constraints on an attribute’s type2 3: the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

• Constraints on semantic consistency of entity
instances:Rules calledwhere rules can be associated
with an entity type. For example, an entity type named
unit-vector possessingREAL valued attributesx
andy might have a where rule requiringx**2 + y**2
= 1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

• Constraints on an entity instance’s type:EXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledcomplex entity
types) and constraints on the legal composition of types
within the hierarchy. For example, an abstract typeper-
son might have subtypesmale andfemale . An
instance ofperson must be one ofmale or female
but not both.

• Constraints on populations of entity instances: Popu-
lations of entities (data sets) must satisfy constraints
described inglobal rules. Such rules can, for example,
constrain the cardinality of the instances of a type (e.g.,
there is only one CEO) or require specific relationships
between entities (e.g., every employee has a supervisor).

• Constraints on the existence of an entity instance:The
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language environment for EXPRESS, that is, an environment
that allows the development of EXPRESS information models and
sample data sets, can be of great value to developers of EXPRESS
information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since the development of
STEP standards has proved to be a lengthy process and a large part
of that effort involves the articulation of an EXPRESS information

2Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated withentities, analogous to C++ or CLOS classes.

3EXPRESS defines the usual primitive types and enumeration and allows
user-defined types that generalize or specialize on primitive or other user-
defined types

model, the STEP community is quite interested in tools that im-
prove the efficiency of EXPRESS development.

Several tools supporting EXPRESS development exist, [Wil-
son], [Libes], [Morris], [STI], [Kiekenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing
models, and the generation of application interfaces than it is the
incremental development of new EXPRESS models. The work de-
scribed here has as its goal the development of a responsive,
incremental development environment for the concurrent develop-
ment of EXPRESS models and representative data sets, (such an
environment as is available to Lisp programmers).

The design of language environments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilation. To date, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Kiekenbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation language (e.g., C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESS environments have
advantages over interpreted approaches in that libraries of com-
piled EXPRESS can be saved for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful in various
applications that want access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengthy, however, can not support a
responsive, incremental development environment: complete pro-
cessing of large EXPRESS models using this approach can take 30
minutes or more.

A strictly interpreted approach can be more responsive to the in-
cremental development of the EXPRESS subject code but can not
take advantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the language (e.g., class-
es, iteration, arithmetic operations) in direct ways. For example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type. For these reasons, the development of an
interpreter requires the development of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
development of an interpreter for a language as large as EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, however, might make interpreted approaches more feasible,
(e.g., [Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'object flavored' but not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS makes a distinction between classes and instances, allows
class hierarchies and inheritance of data attributes.

An object model is a model with a class/instance distinction, en-
capsulation of state via methods and inheritance of behavior from

3

parent classes.Concrete object models,those underlying program-
ming languages, vary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities and various other fea-
tures [Manola]. A fundamental concern in the development of a
language environment for an object flavored language is the de-
gree to which the object model of the implementation language
matches that of the language being modeled. If there is significant
mismatch between the object model of the implementation lan-
guage and that of the target language, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model. That is, software is not reused, but rather,
beginning again with elementary tools, the programmer imple-
ments the object oriented behaviors of the target language
environment. This, of course, is a great amount of work for what
might be a small (but crucial!) deviation towards the behaviors of
the target object model. This paper hopes to illustrate the value of
a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the differences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object model5 differs in some important ways
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of
mismatch between these languages and EXPRESS are found in
the inheritance of attributes (C++ data members, or CLOS slots)
and the approach to subclassing. Three characteristics of the EX-
PRESS language that present challenges in the development of an
EXPRESS language environment are described below:

• CHALLENGE(same-named-attr):When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attributes are inherited by the subclass,
one from each parent defining the attribute.

• CHALLENGE(redefined-attr): In EXPRESS an attribute
defined in a supertype may be redefined in the subtype
only if the domain of values of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but aninteger in the super-
type can not be redefined as anumber in the subtype.

• CHALLENGE(ANDOR-subtyping): Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

4These are, of course, challenges for compiled approaches. Interpreted ap-
proaches using static implementation languages can not make use of the
objects in these ways.

5Although not strictly object oriented, EXPRESS possesses enough of the
characteristics of an object oriented language to make use of the termob-
ject modelmeaningful in this context.

An example of this behavior (calledANDOR subtyping here) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR c ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,
a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
a+b+c, for example, denotes an anonymous class (complex entity
type) possessing the attributes (data members, slots) of the classes
a, b and c.

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-attr) is met quite easily when EX-
PRESS entities are represented as C++ classes, provided that the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a relatively simple
solution to this problem can be found.

Solutions toCHALLENGE(redefined-attr) require knowledge of
the attribute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attribute of the parent. The implementation lan-
guage’s ability to provide access to descriptive information about
the class (e.g, names of attributes, attribute objects, superclasses,
precedence ordering,etc.) can facilitate this effort. For example, in
CLOS, user-defined classes are instances ofstandard-class
or some programmer-defined subtype of it.standard-class
is a subclass ofstandard-object , on which default behaviors
for objects are defined. Since classes (e.g., the classes representing
EXPRESS entity types) are instances themselves, the same ma-
chinery used by other instances (e.g., access to attribute values,
object construction,etc.) can be reused by instances that are class-
es. An EXPRESS language environment can use this machinery
directly, with one exception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects themselves, C++
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the type’s name are
defined [X3J16]. However, no mechanism exists in C++ to identi-
fy the data members (i.e., EXPRESS entity attributes) of a class.
Therefore, some means other than querying the class must be
found to obtain attributes. One method is to define ‘dictionary’ ob-
jects for both entities and attributes. These objects supplement the
information found in the class with references to attribute objects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to classes.6

CHALLENGE(ANDOR-subtyping) is the problem of managing
the proliferation of classes possible in ANDOR subtyping. That is,
because of ANDOR subtyping, a large EXPRESS information
model can result in the definition of hundreds of complex entity
types. ANDOR subtyping, although an advantage from the model-
er’s standpoint, is a challenge to the language environment
programmer. For the C++ programmer, the question is whether to
implement each complex entity as a class, thereby increasing the

4

size of the image and compile time, or opting for some solution
where complex entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity and elegance
in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classes was implemented in this work.
It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed from existing classes. [Kiczales]. This is de-
scribed further in the next section.

3.0 ELEMENTS OF THE SOLUTION

The author is developing an EXPRESS language environment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an interface to a language that gives the
programmer the ability to incrementally modify the language’s be-
havior and implementation [Kiczales]. The metaobject protocol is
used to eliminate the mismatch between the implementation lan-
guage (CLOS) object model and the target language (EXPRESS)
object model so that the mechanisms of the implementation lan-
guage’s object system (e.g., object definition, instance creation,
method dispatching,etc.) can be reused. The motivation behind
this approach is the belief that the reuse of these mechanisms will
enhance the quality and speed of implementation.

The solution also employs dynamic object techniques (e.g., run-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that the environment be
responsive and that information models under development may
be incrementally refined. Dynamic object techniques also provide
a solution to the proliferation of classes that can occur because of
EXPRESS ANDOR subtyping.

A principle benefit of implementing in Common Lisp is that the
design may possess the advantages of both compiled and interpret-
ed approaches with few of the disadvantages of either. For
example, advantages of a compiled approach can be had: the sys-
tem can translate EXPRESS information models into Common
Lisp source code that can be compiled off-line and loaded at any
time during a session with the system. Large libraries of existing
EXPRESS information models can be accessed by the EXPRESS
developer by these means. On the other hand, the benefits of an in-
terpreter remain: EXPRESS written in the current session can
immediately and incrementally be made available by run-time
translation to Common Lisp and evaluation by the lisp interpreter.
Because Common Lisp provides a resident programming environ-
ment and interpreter, the development of a complex interpreter
‘execution engine’ is obviated.

6The careful reader might recognize that, for even more fundamental rea-
sons (because C++ does not allow run-time creation of classes) dictionary
objects are necessary in every incremental development environment im-
plemented in C++ (to describe entity types). The point here is to illustrate
one advantage of having information about the class available in the class:
the programmer has one less requirement on his implementation of dictio-
nary objects.

In the system being developed,CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that might never be populated, are created,
is solved through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a from existing classes. The existing
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS environment, generation of programmatic
classes for the entity types requires knowledge of theevaluated
set, the set of all legal entity types [ISO-11]. The evaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clause) of all entity declarations
in the subject EXPRESS7. This computation generates a structure,
complex-entity-type , for each element of the evaluated
set. This structure identifies the simple entity types (those which
are explicitly defined in the EXPRESS source) composing the
complex entity type. When an EXPRESS entity instance is en-
countered through reading data in the exchange format of
EXPRESS information models, [ISO-21], its type is checked
against the evaluated set and, if legal and already generated, is in-
stantiated. If the type is legal but the class has not yet been
generated, the class is generated using the programmatic class
mechanism. Through this means classes representing complex en-
tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attributes of each of the superclasses (simple enti-
ty types) from which it inherits.

CHALLENGE(same-named-attr) is a challenge for Common
Lisp because CLOS classes inheriting a same-named slot from
two superclasses produce a single slot. CLOS classes inherit this
behavior from the standard class metaobject (sometimes called a
metaclass) STANDARD-CLASS. The solution to this problem
uses the metaobject protocol to provide a subclass ofSTAN-
DARD-CLASS (calledEXPRESS-CLASS here) that overrides the
slot computation methods onSTANDARD-CLASS with methods
that produce multiple slots in accordance with EXPRESS object
model behavior. Although the class of the classes representing
EXPRESS entity types is no longerSTANDARD-CLASS, other
classes in the system are undisturbed by this modification.

The metaobject protocol is also used to ensure that all of the in-
formation found in an EXPRESS entity type definition can be
encoded in the corresponding CLOS class object. For example, the
standard CLOS metaobject defining slot features,STANDARD-
SLOT, was subclassed by a classEXPRESS-SLOT to allow the
recording of EXPRESS-specific features of attributes. For exam-
ple, EXPRESS entity attributes may be declared asOPTIONAL,
so that instances are free to leave that attribute’s value unspecified.
To implement this featureEXPRESS-SLOT extends the class
STANDARD-SLOT with an additional slot,OPTIONAL-P, indi-

7The supertype-constraint clause includes theANDOR constraint described
earlier as well asAND, ONEOF andABSTRACT constraints.

5

cating whether the EXPRESS attribute is optional. In a similar
fashion the EXPRESS attribute featuresDERIVED, INVERSE
andUNIQUE, and the recording of the attribute’s source (the sim-
ple entity type from which it is inherited) and EXPRESS type is
accommodated in the extended slot definition metaobject.

A solution toCHALLENGE(redefined-attr), where it is neces-
sary to determine whether the domain of an attribute in a subtype
is indeed a restriction of the domain of the same-named attribute
in the supertype, has yet to be implemented. The solution requires
analysis of the types of both attributes and will probably be ac-
complished by unification8 on the typed feature structures stored
as type information of the attributes involved.

4.0 SYSTEM ARCHITECTURE

 EXPRESS is a moderately large language.9 Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com-
prised of three components:

• a core component that provides the behaviors of the
EXPRESS object model, as described earlier, and entity
instance reading and writing routines using STEP file-
based exchange form, [ISO-21];

• an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

• a rule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

The last two of these components are discussed in this section.

An EXPRESS parser is produced from the Zebu reversible LA-
LR(1) parser generator [Laubsch]. Zebu generates parsers that are
reversible in the sense that it produces code for both a “forward”
parse to Common Lisp structures and a “reverse” parse back to the
source language (e.g., EXPRESS). The reverse parse is imple-
mented as print functions on the Common Lisp structures
generated in the forward parse. Hence when a Common Lisp
structure resulting from the forward parse of EXPRESS is printed
by Lisp, it appears as the original EXPRESS.10

Translation with the Zebu reversible parser can be performed by
providing reversible parsers for both the input language (e.g., EX-
PRESS) and the output language (e.g., certain lisp forms). To

8[Carpenter] provides an introduction to the logic of typed feature struc-
tures.

9The EXPRESS grammar consists of more than 450 productions.

perform the translation, the source language is forward parsed into
structures, then rewrite rules are executed to transform the abstract
syntax tree structures to a tree corresponding to the target lan-
guage. Finally, the reverse parser (print functions) of the target
language is used to produce the corresponding statements in the
target language. Using this approach, translation is largely a mat-
ter of specifying the BNF for both languages and sets of rewrite
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

The transformation of the abstract syntax tree is performed by a
sister application of Zebu called Zebra, [Konrad]. Zebra provides
a rule-based language for the pre-order and post-order transforma-
tion of abstract syntax trees produced by Zebu.

Zebu and Zebra have been very effective tools in overcoming
the complexity of EXPRESS translation.

5.0 CONCLUSION

The immediate goal of this work has been the design of a tool
for the efficient development of EXPRESS models. Such a tool
will serve the needs of EXPRESS developers. The software should
also find reuse in the development of EXPRESS translators (e.g.,
to CORBA IDL [CORBA], Unified method [Booch],etc.). Be-
yond EXPRESS lay the larger aspects of the STEP architecture,
(e.g., application protocols, integrated resources). The application
of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, may provide an
even greater benefit.

Finally, this work has shown that a good design of a language
environment for a object flavored language may use the imple-
mentation language’s metaobject protocol (where one exists) to
align the implementation’s object model behaviors with the needs
of the target language objects. This approach may result in a
smaller, more comprehensible program. Because the machinery of
native object system is reused, the programmer may continue to
use the familiar, native means of attribute access, object creation
and method definition.

Dynamic object techniques are likewise critical to the solution.
Dynamic object creation allows a straightforward solution to the
proliferation of implicitly defined, potentially unpopulated classes
that might otherwise result from EXPRESS ANDOR subtyping.
Because classes may be created at run-time, the system can be far
more responsive to the incremental development of the EXPRESS
information model.

In addition to the techniques of dynamic object and meta-level
programming, an efficient means to translate from the subject lan-

10Recall that lisp programmers have the freedom to define how some lisp
objects are printed by the lisp printer. Structures are printed according to a
function defined in thedefstruct . CLOS objects are printed according
to the methodprint-object .

6

guage is necessary. Although, to date, only a small amount of
necessary syntax transformation has been performed in this
project, the combination of reversible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author would like to acknowledge the important contribu-
tion to the software development of this project made by Joachim
Laubsch of Hewlett-Packard Laboratories, who developed Zebu
and provided bug fixes and suggestions. Likewise, Karsten Kon-
rad’s program, Zebra, and his suggestions on its usage helped to
make this work much easier. The author would also like to thank
the workshop reviewers, David Terebessy and Lawrence Mayka
and NIST reviewers, Bill Danner, KC Morris and Mary Mitchell
for insightful comments. Bill Danner’s ideas for future develop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugh,Unified Method
for Object-Oriented Development, Rational Software Corporation,
1995.

[Carpenter] Bob Carpenter, The Logic of Typed Feature Struc-
tures, Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBA] The Object Management Group, Inc.,The Common
Object Request Broker: Architecture and Specification (CORBA),
The Object Management Group Inc., http://ruby.omg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Overview and Fundamen-
tal Principles, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step11, 1994.

[ISO-11] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Description Methods: The
EXPRESS Language Reference Manual, International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Implementation Methods:
Clear Text Encoding of the Exchange Structure, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Integrated Generic Re-

11ISO IS level references are copyrighted and may be purchased from ISO.
Draft copies can be obtained for free at this FTP address.

sources: Geometric and Topological Representation, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-218] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Application Protocol: Ship
Structures, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, Paul Hudak and Mark Jones,Monad
Transformers and Modular Interpreters, Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clark,The NIST EXPRESS Toolkit
- Lessons Learned, EXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Protocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juergen Kiekenbeck, Annette Siegenthaler, and
Gunter Schlageter,EXPRESS to C++: A mapping of the type-sys-
tem, EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Konrad,Abstrakte Syntaxtransformation mit
getypen Merkmalstermen, Diplom Thesis, ftp://cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim Laubsch,Zebu: A Tool for Specifying Re-
versible LALR(1) Parsers. Hewlett-Packard Laboratories,
Software Technology Laboratory, Internal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/AI/html/repository.html.

[Manola] Frank Manola, Editor, X3H7 Technical Committee
(Object Information Management),Features Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, David Sauder and Sandy Ressler,
Validation Testing System: Reusable Software Component Design.
National Institute of Standards and Technology, NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peter Wilson, Information
Modeling: The EXPRESS Way, Oxford University Press, 1994.

[STI] STEP Tools Inc.,Home Page, http://www.steptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS Tools and Services, (1990-
1995), ftp://pub/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3J16,Work-
ing Paper for Draft Proposed International Standard for
Information Systems Programming Language C++, http://
www.cygnus.com/misc/wp/draft/, April 28, 1995.

1

ABSTRACT

 This paper describes design and programming techniques em-
ployed in the development of a language environment for the
EXPRESS information modeling language. A fundamental con-
cern in the development of language environments for object
flavored languages is the degree to which the object model of the
implementation language matches that of the language being mod-
eled. If there is significant mismatch, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model,i.e. eschewing the implementation's na-
tive object model and programming with elementary tools the
object oriented behaviors of the target language environment. This
paper describes how object model mismatch was eliminated and a
responsive, incremental EXPRESS language environment is being
developed using the Common Lisp Object System (CLOS)
metaobject protocol (MOP) and dynamic object techniques.

1.0 INTRODUCTION

The paper begins with a presentation of background information
regarding EXPRESS and its role in ISO 10303, more commonly
referred to as STEP (The Standard for the Exchange of Product
Model Data). Section 2.1 provides an overview of design princi-
ples commonly employed in the design of EXPRESS language
tools. Sections 2.2 and 2.3 concern the problems of object model
mismatch that confront designers of EXPRESS tools. Section 3.0
presents aspects of the author’s Common Lisp implementation of
an EXPRESS language environment. It describes solutions to the
problems introduced in section 2 employing dynamic object tech-
niques, CLOS and its metaobject protocol. Section 4.0 describes
additional aspects of the EXPRESS language environment cur-
rently under development. The paper concludes with a summary
of how dynamic object techniques and meta-level programming

have contributed to the development of an EXPRESS language en-
vironment and how these same techniques might find use in the
larger context of STEP development.

2.0 BACKGROUND

EXPRESS [ISO-11], [Schenck] is a formal language used to de-
scribe information models of STEP. The STEP standards support
the unambiguous communication of industrial information ex-
changed in forms derived from EXPRESS language information
models.1 Within the STEP architecture, aproduct model, that is,
an information model from which a range of similar artifacts can
be described, is defined by anapplication protocol (for example,
the application protocol,Ship Structures, [ISO-218]). Application
protocols rely on libraries of commonly used concepts calledinte-
grated resources. The integrated resources collectively describe an
abstract model of products. Components of the abstract model in-
clude, for example,Geometric and Topological Representations
[ISO-42], which can be used in the description of application pro-
tocol for ship structures, automotive components,etc.. The reuse
of common components improves the quality and development ef-
ficiency of application protocols and facilitates information
sharing among related disciplines (e.g., design systems and pro-
duction scheduling systems may share an entity authorizing the
release of a part for production).

Integrated resources and application protocols are defined in the
EXPRESS language. Further discussion of the STEP architecture
[ISO-1] is outside the scope of this paper.

1EXPRESS itself is an ISO standard developed by the STEP community.

Dynamic Objects and Meta-level Programming of an EXPRESS Language Environment

Peter Denno

Manufacturing Systems Integration Division
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

pdenno@cme.nist.gov

(301) 975-3595

Dynamic Objects W orkshop

Object W orld, 1996

2

In order to convey the information intended, systems that ex-
change data must agree upon the semantics of that data. A
fundamental design goal of an information modeling language,
such as EXPRESS, is to provide the means to describe informa-
tion models (and subsequently data) reflecting a mutually
understood semantics. That is, the language is used to define con-
straints which data sets exchanged must satisfy. In EXPRESS
these constraints take several forms:

• Constraints on an attribute’s type2 3: the value of an
attribute must be type-compatible with the type declared
in the attributes’s declaration.

• Constraints on semantic consistency of entity
instances:Rules calledwhere rules can be associated
with an entity type. For example, an entity type named
unit-vector possessingREAL valued attributesx
andy might have a where rule requiringx**2 + y**2
= 1 . These rules are procedurally defined in EXPRESS
and may rely on built-in and user-defined functions and
procedures.

• Constraints on an entity instance’s type:EXPRESS
provides a flexible mechanism for defining and compos-
ing hierarchical entity types (calledcomplex entity
types) and constraints on the legal composition of types
within the hierarchy. For example, an abstract typeper-
son might have subtypesmale andfemale . An
instance ofperson must be one ofmale or female
but not both.

• Constraints on populations of entity instances: Popu-
lations of entities (data sets) must satisfy constraints
described inglobal rules. Such rules can, for example,
constrain the cardinality of the instances of a type (e.g.,
there is only one CEO) or require specific relationships
between entities (e.g., every employee has a supervisor).

• Constraints on the existence of an entity instance:The
existence on an entity may depend on the existence of
another entity.

2.1 Classification of EXPRESS Langua ge Environments

A language environment for EXPRESS, that is, an environment
that allows the development of EXPRESS information models and
sample data sets, can be of great value to developers of EXPRESS
information models. The EXPRESS for some STEP standards can
run into the thousands of lines of code. Since the development of
STEP standards has proved to be a lengthy process and a large part
of that effort involves the articulation of an EXPRESS information

2Attributescorrespond to C++ data members or CLOS slots. Attributes are
associated withentities, analogous to C++ or CLOS classes.

3EXPRESS defines the usual primitive types and enumeration and allows
user-defined types that generalize or specialize on primitive or other user-
defined types

model, the STEP community is quite interested in tools that im-
prove the efficiency of EXPRESS development.

Several tools supporting EXPRESS development exist, [Wil-
son], [Libes], [Morris], [STI], [Kiekenbeck]. The focus of these
tools is more the validation of data sets, the exploration of existing
models, and the generation of application interfaces than it is the
incremental development of new EXPRESS models. The work de-
scribed here has as its goal the development of a responsive,
incremental development environment for the concurrent develop-
ment of EXPRESS models and representative data sets, (such an
environment as is available to Lisp programmers).

The design of language environments include strictly interpret-
ed approaches, strictly compiled approaches, and designs that
utilize both interpretation and compilation. To date, compiled ap-
proaches to EXPRESS tools ([Morris], [STI], [Kiekenbeck]) use
the subject EXPRESS to automatically generate code in an imple-
mentation language (e.g., C++) which is then compiled and link-
edited with auxiliary libraries that are independent from the sub-
ject code. Compiled approaches to EXPRESS environments have
advantages over interpreted approaches in that libraries of com-
piled EXPRESS can be saved for later inclusion in information
models without incurring the cost of interpretation. Also, the auto-
matically generated source code is often useful in various
applications that want access to data in the form defined by the
subject EXPRESS model. Compiled approaches where compila-
tion and link-edit are lengthy, however, can not support a
responsive, incremental development environment: complete pro-
cessing of large EXPRESS models using this approach can take 30
minutes or more.

A strictly interpreted approach can be more responsive to the in-
cremental development of the EXPRESS subject code but can not
take advantage of compiled libraries of supporting EXPRESS in-
formation models. Nor can interpreters implemented in statically
compiled languages use the constructs of the language (e.g., class-
es, iteration, arithmetic operations) in direct ways. For example,
an interpreter can not generate and use a C++ class to represent an
EXPRESS entity type. For these reasons, the development of an
interpreter requires the development of fundamental supporting
mechanisms unnecessary in compiled approaches. Therefore, the
development of an interpreter for a language as large as EXPRESS
is a daunting task. Recent developments in the design of interpret-
ers, however, might make interpreted approaches more feasible,
(e.g., [Liang]).

Approaches that use both compilation and interpretation are
commonly implemented in languages possessing resident
programming environments, such as Smalltalk or Lisp.

2.2 Mismatch of Object Models

EXPRESS is an information modeling language, not a program-
ming language. EXPRESS is 'object flavored' but not strictly
object oriented. (It does not encapsulate state with methods). EX-
PRESS makes a distinction between classes and instances, allows
class hierarchies and inheritance of data attributes.

An object model is a model with a class/instance distinction, en-
capsulation of state via methods and inheritance of behavior from

3

parent classes.Concrete object models,those underlying program-
ming languages, vary with respect to inheritance, encapsulation,
information hiding, dynamic capabilities and various other fea-
tures [Manola]. A fundamental concern in the development of a
language environment for an object flavored language is the de-
gree to which the object model of the implementation language
matches that of the language being modeled. If there is significant
mismatch between the object model of the implementation lan-
guage and that of the target language, the programmer is forced to
reconcile the differences with little aid from the implementation
language's object model. That is, software is not reused, but rather,
beginning again with elementary tools, the programmer imple-
ments the object oriented behaviors of the target language
environment. This, of course, is a great amount of work for what
might be a small (but crucial!) deviation towards the behaviors of
the target object model. This paper hopes to illustrate the value of
a metaobject protocol (specifically the CLOS metaobject protocol)
in reconciling the differences between the object models of the tar-
get and implementation languages.

2.3 Three Challenges in Object Model Mismatch 4

The EXPRESS object model5 differs in some important ways
from the concrete object models underlying common program-
ming languages (C++, Smalltalk, CLOS). Significant areas of
mismatch between these languages and EXPRESS are found in
the inheritance of attributes (C++ data members, or CLOS slots)
and the approach to subclassing. Three characteristics of the EX-
PRESS language that present challenges in the development of an
EXPRESS language environment are described below:

• CHALLENGE(same-named-attr):When same-named
attributes of two EXPRESS entities are inherited through
two distinct paths (EXPRESS allows multiple inherit-
ance) two distinct attributes are inherited by the subclass,
one from each parent defining the attribute.

• CHALLENGE(redefined-attr): In EXPRESS an attribute
defined in a supertype may be redefined in the subtype
only if the domain of values of the subtype is a restriction
of the domain of the supertype. Thus an attribute of type
number in the supertype can be redefined as type
integer in the subtype, but aninteger in the super-
type can not be redefined as anumber in the subtype.

• CHALLENGE(ANDOR-subtyping): Unless explicitly
prohibited by a clause in the entity definition, the direct
subtypes of an EXPRESS entity type can be combined to
define additional subtypes.

4These are, of course, challenges for compiled approaches. Interpreted ap-
proaches using static implementation languages can not make use of the
objects in these ways.

5Although not strictly object oriented, EXPRESS possesses enough of the
characteristics of an object oriented language to make use of the termob-
ject modelmeaningful in this context.

An example of this behavior (calledANDOR subtyping here) is
illustrated in the following example EXPRESS.

ENTITY a SUPERCLASS OF (b ANDOR c ANDOR d);

This clause declares that the entity combinations a, a+b, a+c,
a+d, a+b+c, a+b+d, a+c+d and a+b+c+d are all instantiable, where
a+b+c, for example, denotes an anonymous class (complex entity
type) possessing the attributes (data members, slots) of the classes
a, b and c.

Very different solutions to these challenges may be found de-
pending on the implementation language chosen.
CHALLENGE(same-named-attr) is met quite easily when EX-
PRESS entities are represented as C++ classes, provided that the
inheritance is declared virtual. On the same challenge CLOS does
not map well; it combines the two attributes into one slot. Howev-
er, by using the CLOS meta-object protocol, a relatively simple
solution to this problem can be found.

Solutions toCHALLENGE(redefined-attr) require knowledge of
the attribute’s type in order to determine whether the type of the
attribute of the child is indeed a restriction of the type found in the
same-named attribute of the parent. The implementation lan-
guage’s ability to provide access to descriptive information about
the class (e.g, names of attributes, attribute objects, superclasses,
precedence ordering,etc.) can facilitate this effort. For example, in
CLOS, user-defined classes are instances ofstandard-class
or some programmer-defined subtype of it.standard-class
is a subclass ofstandard-object , on which default behaviors
for objects are defined. Since classes (e.g., the classes representing
EXPRESS entity types) are instances themselves, the same ma-
chinery used by other instances (e.g., access to attribute values,
object construction,etc.) can be reused by instances that are class-
es. An EXPRESS language environment can use this machinery
directly, with one exception: since the type system and sense of
type restriction defined in EXPRESS does not map directly to the
Common Lisp type system, the programmer must define a method
to order types by specificity.

In part because C++ classes are not objects themselves, C++
provides little support for solutions to this challenge. In C++, the
typeid operation applied to an object can be used to obtain a
type_info object for the original object, on which operations
for type collating, type equality and access to the type’s name are
defined [X3J16]. However, no mechanism exists in C++ to identi-
fy the data members (i.e., EXPRESS entity attributes) of a class.
Therefore, some means other than querying the class must be
found to obtain attributes. One method is to define ‘dictionary’ ob-
jects for both entities and attributes. These objects supplement the
information found in the class with references to attribute objects.
Dictionary objects are, in essence, a partial forfeiture from the
mapping of EXPRESS entity types to classes.6

CHALLENGE(ANDOR-subtyping) is the problem of managing
the proliferation of classes possible in ANDOR subtyping. That is,
because of ANDOR subtyping, a large EXPRESS information
model can result in the definition of hundreds of complex entity
types. ANDOR subtyping, although an advantage from the model-
er’s standpoint, is a challenge to the language environment
programmer. For the C++ programmer, the question is whether to
implement each complex entity as a class, thereby increasing the

4

size of the image and compile time, or opting for some solution
where complex entity types are not represented as a single C++
class, and thereby forfeiting some of the simplicity and elegance
in the object model mapping. An effective and simple CLOS solu-
tion to the proliferation of classes was implemented in this work.
It utilizes dynamic objects called ‘programmatic classes’ that are
composed as needed from existing classes. [Kiczales]. This is de-
scribed further in the next section.

3.0 ELEMENTS OF THE SOLUTION

The author is developing an EXPRESS language environment
using Common Lisp and the CLOS metaobject protocol. A
metaobject protocol is an interface to a language that gives the
programmer the ability to incrementally modify the language’s be-
havior and implementation [Kiczales]. The metaobject protocol is
used to eliminate the mismatch between the implementation lan-
guage (CLOS) object model and the target language (EXPRESS)
object model so that the mechanisms of the implementation lan-
guage’s object system (e.g., object definition, instance creation,
method dispatching,etc.) can be reused. The motivation behind
this approach is the belief that the reuse of these mechanisms will
enhance the quality and speed of implementation.

The solution also employs dynamic object techniques (e.g., run-
time class definition, class redefinition). Dynamic object tech-
niques support the requirements that the environment be
responsive and that information models under development may
be incrementally refined. Dynamic object techniques also provide
a solution to the proliferation of classes that can occur because of
EXPRESS ANDOR subtyping.

A principle benefit of implementing in Common Lisp is that the
design may possess the advantages of both compiled and interpret-
ed approaches with few of the disadvantages of either. For
example, advantages of a compiled approach can be had: the sys-
tem can translate EXPRESS information models into Common
Lisp source code that can be compiled off-line and loaded at any
time during a session with the system. Large libraries of existing
EXPRESS information models can be accessed by the EXPRESS
developer by these means. On the other hand, the benefits of an in-
terpreter remain: EXPRESS written in the current session can
immediately and incrementally be made available by run-time
translation to Common Lisp and evaluation by the lisp interpreter.
Because Common Lisp provides a resident programming environ-
ment and interpreter, the development of a complex interpreter
‘execution engine’ is obviated.

6The careful reader might recognize that, for even more fundamental rea-
sons (because C++ does not allow run-time creation of classes) dictionary
objects are necessary in every incremental development environment im-
plemented in C++ (to describe entity types). The point here is to illustrate
one advantage of having information about the class available in the class:
the programmer has one less requirement on his implementation of dictio-
nary objects.

In the system being developed,CHALLENGE(ANDOR-subtyp-
ing), that is, the proliferation of classes that might result if all
classes, including those that might never be populated, are created,
is solved through the use of the programmatic class approach. A
programmatic class, as described in [Kiczales], is a class generat-
ed at run-time by composing a from existing classes. The existing
classes, in our case, are the classes representing simple entity
types produced through translation of the EXPRESS source.

In an EXPRESS environment, generation of programmatic
classes for the entity types requires knowledge of theevaluated
set, the set of all legal entity types [ISO-11]. The evaluated set is
calculated by a computation on the declaration of subtyping con-
straints (thesupertype-constraint clause) of all entity declarations
in the subject EXPRESS7. This computation generates a structure,
complex-entity-type , for each element of the evaluated
set. This structure identifies the simple entity types (those which
are explicitly defined in the EXPRESS source) composing the
complex entity type. When an EXPRESS entity instance is en-
countered through reading data in the exchange format of
EXPRESS information models, [ISO-21], its type is checked
against the evaluated set and, if legal and already generated, is in-
stantiated. If the type is legal but the class has not yet been
generated, the class is generated using the programmatic class
mechanism. Through this means classes representing complex en-
tity types are not defined until there is a need to instantiate an
entity of that class. The programmatic class generated contains the
information and attributes of each of the superclasses (simple enti-
ty types) from which it inherits.

CHALLENGE(same-named-attr) is a challenge for Common
Lisp because CLOS classes inheriting a same-named slot from
two superclasses produce a single slot. CLOS classes inherit this
behavior from the standard class metaobject (sometimes called a
metaclass) STANDARD-CLASS. The solution to this problem
uses the metaobject protocol to provide a subclass ofSTAN-
DARD-CLASS (calledEXPRESS-CLASS here) that overrides the
slot computation methods onSTANDARD-CLASS with methods
that produce multiple slots in accordance with EXPRESS object
model behavior. Although the class of the classes representing
EXPRESS entity types is no longerSTANDARD-CLASS, other
classes in the system are undisturbed by this modification.

The metaobject protocol is also used to ensure that all of the in-
formation found in an EXPRESS entity type definition can be
encoded in the corresponding CLOS class object. For example, the
standard CLOS metaobject defining slot features,STANDARD-
SLOT, was subclassed by a classEXPRESS-SLOT to allow the
recording of EXPRESS-specific features of attributes. For exam-
ple, EXPRESS entity attributes may be declared asOPTIONAL,
so that instances are free to leave that attribute’s value unspecified.
To implement this featureEXPRESS-SLOT extends the class
STANDARD-SLOT with an additional slot,OPTIONAL-P, indi-

7The supertype-constraint clause includes theANDOR constraint described
earlier as well asAND, ONEOF andABSTRACT constraints.

5

cating whether the EXPRESS attribute is optional. In a similar
fashion the EXPRESS attribute featuresDERIVED, INVERSE
andUNIQUE, and the recording of the attribute’s source (the sim-
ple entity type from which it is inherited) and EXPRESS type is
accommodated in the extended slot definition metaobject.

A solution toCHALLENGE(redefined-attr), where it is neces-
sary to determine whether the domain of an attribute in a subtype
is indeed a restriction of the domain of the same-named attribute
in the supertype, has yet to be implemented. The solution requires
analysis of the types of both attributes and will probably be ac-
complished by unification8 on the typed feature structures stored
as type information of the attributes involved.

4.0 SYSTEM ARCHITECTURE

 EXPRESS is a moderately large language.9 Because of this, an
efficient solution to the problem of translating EXPRESS source
to Common Lisp forms is essential. The system, therefore, is com-
prised of three components:

• a core component that provides the behaviors of the
EXPRESS object model, as described earlier, and entity
instance reading and writing routines using STEP file-
based exchange form, [ISO-21];

• an EXPRESS parser that builds typed feature structures
from the input EXPRESS. (Feature structures are ele-
ments of a logic on which unification, generalization and
specialization are defined). Typed feature structures are
modeled as Common Lisp structures;

• a rule-based syntax transformation component that trans-
forms the syntax tree of feature structures produced by
the parser to a syntax tree of feature structures in the tar-
get language, Common Lisp.

The last two of these components are discussed in this section.

An EXPRESS parser is produced from the Zebu reversible LA-
LR(1) parser generator [Laubsch]. Zebu generates parsers that are
reversible in the sense that it produces code for both a “forward”
parse to Common Lisp structures and a “reverse” parse back to the
source language (e.g., EXPRESS). The reverse parse is imple-
mented as print functions on the Common Lisp structures
generated in the forward parse. Hence when a Common Lisp
structure resulting from the forward parse of EXPRESS is printed
by Lisp, it appears as the original EXPRESS.10

Translation with the Zebu reversible parser can be performed by
providing reversible parsers for both the input language (e.g., EX-
PRESS) and the output language (e.g., certain lisp forms). To

8[Carpenter] provides an introduction to the logic of typed feature struc-
tures.

9The EXPRESS grammar consists of more than 450 productions.

perform the translation, the source language is forward parsed into
structures, then rewrite rules are executed to transform the abstract
syntax tree structures to a tree corresponding to the target lan-
guage. Finally, the reverse parser (print functions) of the target
language is used to produce the corresponding statements in the
target language. Using this approach, translation is largely a mat-
ter of specifying the BNF for both languages and sets of rewrite
rules to transform the syntax tree from the form of the source lan-
guage to form of the target language.

The transformation of the abstract syntax tree is performed by a
sister application of Zebu called Zebra, [Konrad]. Zebra provides
a rule-based language for the pre-order and post-order transforma-
tion of abstract syntax trees produced by Zebu.

Zebu and Zebra have been very effective tools in overcoming
the complexity of EXPRESS translation.

5.0 CONCLUSION

The immediate goal of this work has been the design of a tool
for the efficient development of EXPRESS models. Such a tool
will serve the needs of EXPRESS developers. The software should
also find reuse in the development of EXPRESS translators (e.g.,
to CORBA IDL [CORBA], Unified method [Booch],etc.). Be-
yond EXPRESS lay the larger aspects of the STEP architecture,
(e.g., application protocols, integrated resources). The application
of these same techniques of meta-level and dynamic programming
to these aspects STEP, for example, for the facilitation of reuse of
integrated resources in application protocols, may provide an
even greater benefit.

Finally, this work has shown that a good design of a language
environment for a object flavored language may use the imple-
mentation language’s metaobject protocol (where one exists) to
align the implementation’s object model behaviors with the needs
of the target language objects. This approach may result in a
smaller, more comprehensible program. Because the machinery of
native object system is reused, the programmer may continue to
use the familiar, native means of attribute access, object creation
and method definition.

Dynamic object techniques are likewise critical to the solution.
Dynamic object creation allows a straightforward solution to the
proliferation of implicitly defined, potentially unpopulated classes
that might otherwise result from EXPRESS ANDOR subtyping.
Because classes may be created at run-time, the system can be far
more responsive to the incremental development of the EXPRESS
information model.

In addition to the techniques of dynamic object and meta-level
programming, an efficient means to translate from the subject lan-

10Recall that lisp programmers have the freedom to define how some lisp
objects are printed by the lisp printer. Structures are printed according to a
function defined in thedefstruct . CLOS objects are printed according
to the methodprint-object .

6

guage is necessary. Although, to date, only a small amount of
necessary syntax transformation has been performed in this
project, the combination of reversible parsers with rule-based tree
transformation looks very promising.

ACKNOWLEDGEMENTS

The author would like to acknowledge the important contribu-
tion to the software development of this project made by Joachim
Laubsch of Hewlett-Packard Laboratories, who developed Zebu
and provided bug fixes and suggestions. Likewise, Karsten Kon-
rad’s program, Zebra, and his suggestions on its usage helped to
make this work much easier. The author would also like to thank
the workshop reviewers, David Terebessy and Lawrence Mayka
and NIST reviewers, Bill Danner, KC Morris and Mary Mitchell
for insightful comments. Bill Danner’s ideas for future develop-
ment are especially appreciated.

REFERENCES

[Booch] Grady Booch and James Rumbaugh,Unified Method
for Object-Oriented Development, Rational Software Corporation,
1995.

[Carpenter] Bob Carpenter, The Logic of Typed Feature Struc-
tures, Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, 1993

[CORBA] The Object Management Group, Inc.,The Common
Object Request Broker: Architecture and Specification (CORBA),
The Object Management Group Inc., http://ruby.omg.org/pubo-
dr.htm#Publications, 1995

[ISO-1] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Overview and Fundamen-
tal Principles, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step11, 1994.

[ISO-11] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Description Methods: The
EXPRESS Language Reference Manual, International Standard,
ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-21] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Implementation Methods:
Clear Text Encoding of the Exchange Structure, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-42] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Integrated Generic Re-

11ISO IS level references are copyrighted and may be purchased from ISO.
Draft copies can be obtained for free at this FTP address.

sources: Geometric and Topological Representation, International
Standard, ISO TC184/SC4, ftp://ftp.cme.nist.gov/pub/step, 1994.

[ISO-218] International Organization for Standardization,ISO
10303 Industrial Automation Systems and Integration — Product
Data Representation and Exchange — Application Protocol: Ship
Structures, International Standard, ISO TC184/SC4, ftp://
ftp.cme.nist.gov/pub/step, 1994.

[Liang] Sheng Liang, Paul Hudak and Mark Jones,Monad
Transformers and Modular Interpreters, Principles of Program-
ming Languages’95, San Francisco, CA, January, 1995.

[Libes] Don Libes and Steve Clark,The NIST EXPRESS Toolkit
- Lessons Learned, EXPRESS Users Group Conference Proceed-
ings (EUG’92) Dallas, Texas, October 17-18, 1992.

[Kiczales] Gregor Kiczales, Jim des Rivieres and Daniel G. Bo-
brow, The Art of the Metaobject Protocol, The MIT Press,
Cambridge, Massachusetts, 1991.

[Kiekenbeck] Juergen Kiekenbeck, Annette Siegenthaler, and
Gunter Schlageter,EXPRESS to C++: A mapping of the type-sys-
tem, EXPRESS Users Group Conference Proceedings (EUG’95)
Grenoble, France, October 21-22, 1995.

[Konrad] Karsten Konrad,Abstrakte Syntaxtransformation mit
getypen Merkmalstermen, Diplom Thesis, ftp://cl-ftp.dfki.uni-
sb.de, September 23, 1994.

[Laubsch] Joachim Laubsch,Zebu: A Tool for Specifying Re-
versible LALR(1) Parsers. Hewlett-Packard Laboratories,
Software Technology Laboratory, Internal Report, July 26, 1995.
http://www.cs.cmu.edu/Web/Groups/AI/html/repository.html.

[Manola] Frank Manola, Editor, X3H7 Technical Committee
(Object Information Management),Features Matrix of Object
Models, Final Technical Report, ftp://ftp.gte.com/pub/dom/x3h7/
adfinal.ps, March, 1996.

[Morris] Katherine C. Morris, David Sauder and Sandy Ressler,
Validation Testing System: Reusable Software Component Design.
National Institute of Standards and Technology, NISTIR 4937,
October, 1992

[Schenck] Douglas Schenck and Peter Wilson, Information
Modeling: The EXPRESS Way, Oxford University Press, 1994.

[STI] STEP Tools Inc.,Home Page, http://www.steptools.com/
index.html

[Wilson] Peter Wilson, EXPRESS Tools and Services, (1990-
1995), ftp://pub/step/express/tools/etools.ps, September, 1995.

[X3J16] ANSI Accredited Standards Committee X3J16,Work-
ing Paper for Draft Proposed International Standard for
Information Systems Programming Language C++, http://
www.cygnus.com/misc/wp/draft/, April 28, 1995.

